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Abstract 

We discuss methods for robust signal extraction from 
noisy physiological time series as measured in inten-
sive care. The aim is a method which allows a fast 
and reliable de-noising of the data and separation of 
artifacts from relevant changes in the patients condi-
tion1. For approximating local linear trends we use 
robust regression estimators. We examine the per-
formance of the L1 regression, the repeated median2 
and the least median of squares3 for this task.  

Introduction 

In intensive care, clinical information systems acquire 
and store physiological variables online at least every 
minute. Reliable automatic monitoring systems are 
needed to process these data in real time and to sup-
port decision-making at the bedside in time critical 
situations. Clinically relevant changes such as sudden 
level shifts and trends need to be detected and to be 
distinguished from noise and irrelevant artifacts. Me-
dian filtering is frequently applied for signal extrac-
tion from a noisy time series1. However, the perform-
ance of the median worsens markedly when a trend 
occurs4. Therefore, we use robust regression estima-
tors as these are able to adapt to local trends5. Our 
main interests are the reproduction of a linear trend, 
the detection of level shifts, the detection of trend 
changes, and the computational demands. 

Methods 

Robust regression. For robust extraction of a local 
linear trend we apply robust estimators designed for 
the simple linear regression model  y = µ + βx + e . 
An intuitive approach to robust estimation of µ and β 
is to replace squared by absolute distances using L1 
regression. The finite sample replacement breakdown 
point denotes the minimal percentage of outliers 
which suffices to carry the estimate beyond all 
bounds. In our situation, for L1 regression it is about 
29.3%. The repeated median2 and the least median of 
squares3 (LMS) both share the breakdown point of the 
median, which is approximately 50%. For calculation 
of the exact LMS solution6 we use an algorithm 
which has a computational complexity of O(n4). 
Hence, the time needed for computation of the LMS 
is much larger than for the other methods and in-
creases rapidly with the window width.  

Simulation model. In order to compare the regres-
sion estimators in a single time window we generate 
data from the model  Yt = µ + β t + et,  t=-m, ... , m, 
with µ=0 and for several slopes β. The error et is 
simulated from an autoregressive model of order one 
[AR(1)]  et = φ e t-1 + ut  with mean zero, φ in (-1,1) 
and Gaussian innovations ut with unit variance σ2=1. 
Estimates of µ and β allow to approximate the level 
and the slope of the signal at the center t = 0 of the 
time window. The resulting time delay m is deter-
mined by the required stability (m large) and the time 
delay possible in an online application (m small). We 
consider the cases m=10, 15, 25.  

Results and Conclusions 

We find that the L1 regression offers little advantage 
in comparison to the repeated median. The LMS is 
the least influenced by outliers if φ is close to zero, 
but this advantage disappears as |φ| increases. More-
over, the LMS is very variable and computationally 
demanding. The repeated median does also resist 
some outliers, is computationally much less expen-
sive and does not show severe instabilities. Hence, we 
consider it to be a promising candidate for robust sig-
nal extraction when computation time is critical. 
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